LSSVM predictive control based on improved free search algorithm for nonlinear systems

نویسندگان

  • Tian Zhongda
  • Li Shujiang
  • Wang Yanhong
  • Zhang Chao
چکیده

Tian Zhongda, Li Shujiang, Wang Yanhong, Zhang Chao College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China Corresponding author: Tian Zhong-da,Email:[email protected] Abstract: In order to improve control performance of nonlinear systems, a predictive control method based on improved free search algorithm and least square support vector machine was proposed. This predictive control method utilized least square support vector machine to estimate the nonlinear system model and forecast the output value. The output error is reduced through output feedback and error correction. The rolling optimization of control values are obtained through an improved free search algorithm. This predictive control method can be used to design effective controllers for nonlinear systems with unknown mathematical models. Through the simulation experiment of single variable and multivariable nonlinear systems, the simulation results shown that the predictive control method has an excellent adaptive ability and robustness. Key-words: nonlinear systems; predictive control; improved free search algorithm; least square support vector machine

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

A Novel LSSVM Based Algorithm to Increase Accuracy of Bacterial Growth Modeling

Background: The recent progress and achievements in the advanced, accurate, and rigorously evaluated algorithms has revolutionized different aspects of the predictive microbiology including bacterial growth.Objectives: In this study, attempts were made to develop a more accurate hybrid algorithm for predicting the bacterial growth curve which can also be ...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM) is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the ...

متن کامل

IIR System Identification Using Improved Harmony Search Algorithm with Chaos

Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017